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Experiments on transition of Mach reflexion 

By L. F. HENDERSON A N D  A. LOZZI 
Department of Mechanical Engineering, University of Sydneji 

(Received 22 May 1974) 

Detailed experimental data are presented on the transition between regular and 
Mach reflexion. Data have been obtained for steady, pseudo-steady and un- 
steady flows, and include a study of the continuous and discontinuous transitions 
predicted by previous researchers. It is found that the criterion often used to  
calculate the transition condition is wrong in every case that we have investigated. 
I n  its place we propose an alternative criterion which has the property that the 
system remains always in mechanical equilibrium during transition. 

1. Introduction 
It is well known that the reflexion of a plane shock a t  a rigid wall will be a 

regular reflexion RR (sometimes also called a simple reflexion) if its angle of inci- 
dence wo (see figure I )  is comparatively small, but that it will be a more compli- 
cated irregular or Mach reflexion MR for larger values of wo. The criterion 
commonly used to predict the transition RR-MR between the two wave 
systems makes use of the boundary condition that the flow downstream of the 
reflexion must be parallel to the wall. When applied to a regular reflexion this is 
interpreted as meaning that the streamline deflexion angle 6, through the re- 
flected shock is equal in magnitude but opposite in sign to the deflexion angle 
So through the incident shock, hence 

6,+6, = 0. (1)  
Equation ( 1 )  is violated when wo increases to the point where it forces 6, to 
exceed in magnitude the shock detachment value of S,, so that 

P o l  2 IS1detl. (2) 
The equality condition at detachment in (2) is often accepted as the criterion 
for the onset of Mach reflexion RR --f HR, and conversely for the inverse transi- 
tion R R t J l R  (Landau & Lifshitz 1959, p. 412). 

Experiments by Lean ( 1  946) under steady-state conditions in a wind tunnel 
gave no reason to doubt the validity of ( 2 ) .  His work was done a t  free-stream 
Mach numbers M, of about 1-4 and 2.6. Other data for Mo z 2 may be gleaned 
from a paper by Bardsley & Mair (1951). Although their interest was in the 
shock/boundary-layer interaction it is possible to obtain an estimate of the 
conditions for the transition RR4MR from their results, and again there is 
no reason to doubt ( 2 ) .  However, none of this work included a detailed study of 
transition. Doubts do begin to arise when one inspects the data obtained from 
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shock-tube experiments; for example Bleakney & Taub (1949), working with 
data obtained by Smith (1945) from the diffraction of plane shock waves over 
corners, found that regular reflexion sometimes persisted well beyond the limits 
determined by (2). Other data obtained by Griffith & Bleakney ( I  964), Kawamura 
& Saito (1956) and by others amply confirm this conclusion. These experiments 
were conducted with unsteady shocks and revealed the useful fact that the wave 
systems were self-similar, which made it possible to remove the time t from the 
equation of motion (Jones, Martin & Thornhill 1951; Sternberg 1959). Such 
flows are often called pseudo-steady and it is valid to apply steady-state theory 
to a small neighbourhood about any point in a flow of this type and thus in 
particular to calculate local wave angles for comparison with experiment. The 
steady-state theory of regular reflexions has been given by Bleakney & Taub 
and by Stanyukovich (1960) and one can use it to calculate the wave angles at  
the shock confluence (reflexion) point. For Mach reflexion the wave angles at  
the confluence (triple) point can be calculated from the theory developed by 
Eggink (1943), Guderley (1947), Wuest (1948), Wecken (1949), von Neumann 
(1963), Henderson (1964) and Molder (1971). 

The object of the present paper is to report the results of a detailed experi- 
mental examination of the transition. This was done in an attempt to explain 
the apparent discrepancy between the wind-tunnel and shock-tube results. 
The models that we used are shown in figure 1. During the course of our work 
we found that (2) was wrong for every flow we studied. In  its place we shall 
propose an alternative criterion which explains all the known experimental 
facts when the specific-heat ratio y = and Mo 3 2.40; these conditions corre- 
spond to there being either sonic or supersonic flow downstream of the reflected 
shock: M2 2 1.  For the range 1.48 < Mo < 2-40 the criterion is partly successful, 
in that it seems to predict where the experimental data will begin to deviate 
from the RR theory. In  this case M, < 1, and in the limit M, = 1.48 the criterion 
has a Mach-line degeneracy, that is the wave angle becomes equal to the Mach 
angle: w, = p,. The criterion is of no value for M, < 1.48. 

2. Theory of the transition 
In  a paper of signal importance Kawamura & Saito have shown that the 

pressure downstream of the reflected shock can change either continuously or 
discontinuously during transition if (2) is accepted as the criterion. These two 
processes are illustrated by the polar diagrams in figure 2. It is found that for a 
perfect gas with y = Q there will be a discontinuous transition when? M, > 2.23 
and there will be a continuous transition when M, < 2-23.6 Kawamura & Saito 
suggested that the continuous process was caused by the streamlines forming a 
sink on the ordinate of the polar diagram during transition and that this condition 

t The English language version of Kawamura & Saito’s paper gives M, = 3.203 but 
this is thought to be a misprint. 

$ We shall continue to make the distinction between M ,  = 2.40, where M ,  = I ,  and 
Mo = 2.23, which is the boundary between continuous and discontinuous transition. 
Practically this difference in Mo is too small to be resolved by experiment. 
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FIGURE 1. Models used to investigate transition to Mach reflexion. ( a )  Reflexion off a 
rigid wall in a wind tunnel, with minimal boundary-layer interaction. ( b )  Reflexion be- 
tween two similar shock waves in a wind tunnel. (c )  Reflexion off a plane rigid wall in a 
shock tube; k ,  kink in reflected shock. ( d )  Reflexion between two similar shock waves in 
a shock tube. ( e )  Reflexion off a convex rigid wall in a shock tube; I C ,  instantaneous 
corner; LL, locus of instantaneous corners; R,, raaius of curvature = 0.2 m. (f)  Reflexion 
off a concave rigid wall in a shock tube; R2, radius of wall curvature = 0.15 m. 



142 L. F .  Henderson and A. Lozzi 

(4 
FIGURE 3. Hodograph diagrams showing shock polar intersections a t  transition to Mach 
reflexion, lifter Kawamura & Saito. a, a2, criterion ( 2 ) .  ( a )  M, > 2.40. ( 6 )  1.48 < Mo > 
3.40; a1 z a2 represents a sink on the ordinate. 
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FIGURE 3. Criteria for the onset of Mach reflexion. (2), equation (2), 

ISo] = ISlldetl; (3), equation (3), So+S, = 0 = 8,; A ,  M, = 1. 

dominated the downstream flow. The significance of M, = 2.40 is that it corre- 
sponds to M, = 1 for Mach reflexion, while M, > 1 when Mo > 2.40 and M, < 1 
when M, < 2.40. The M2 = 1 condition is plotted in figure 3, which is replotted 
from a paper by Henderson (1965). The importance of this has been enhanced 
by the discovery that a slope discontinuity develops in the reflected wave for 
Mach reflexion, when M, > 1.  Apparently this 'kink', as it is often called, is 
caused by the gas being deflected towards the wall by the M R  system and then 
subsequently being brought back parallel to the wall by a band of compression 
waves. The situation is analogous to the steady-state reflexion of a shock wave 
by a flat plate in the presence of a boundary layer (Bardsley & Mair 1951; 
Holder & Gadd 1955, chap. 8; Chapman, Keuhn & Larson (1958). In any event, 
as M, increases the band of compression waves concentrates itself into a shock 
which has the appearance of being a second Mach stem, and the system is then 
sometimes called a double Mach reflexion. The kink was first noticed by White 
(1952) and since then it has been extensively studied by Merritt (1968), Weynan- 
tes (1968), Gvozdeava e f  al. (1969, 1970), Semenov, Syshchikova & Berezkina 
(1970) and Law & Glass (1971). With the help of pressure transducers both 
Merritt and Gvozdeava have shown t>hat there is a steep positive pressure gradient 
downstream of the primary Mach stem and that this is associated with the 
formation of the secondary Mach stem. All of these experiments were done in 
shock tubes, mostly by using models similar to that shown in figure 1 (c), but 
there is also a t  least one complementary series of wind-tunnel experiments on 
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the phenomenon due to Lozzi (1971), who used a model similar to that shown 
in figure 1 (b) .  These last experiments revealed a sequence of up to four Mach 
reflexions, or combinations of regular and Mach reflexions. 

Now a system which develops a pressure discontinuity during transition cannot 
be in mechanical equilibrium, where we define mechanical equilibrium to mean 
that the vector sum of the pressure forces and the momentum fluxes acting on 
the system is zero. If a pressure discontinuity occurs during transition then an 
unsteady wave of finite amplitude or a finite amplitude band of waves will be 
generated in the flow. These would be expansions for RR -+ JlR and compressions 
for RRt-MR, but to the best of our knowledge they have never been reported. 
We therefore sought an alternative to (2) that would still satisfy (1) yet enable 
the system to remain always in mechanical equilibrium during transition. A 
suitable criterion can be constructed from the theory discussed by Molder 
( 197 1). He takes into account the effect of shock-wave curvature at  the confluence 
point and finds that the pressure in the downstream flow is then continuous 
during transition. It is readily concluded from his work that the criterion which 
has the desired properties is characterized by the condition that the Mach stem 
be normal to the flow at the transition condition. We write this as follows: 

so + 6, = 0 = s,, (3) 

where 8, is the zero-streamline deflexion through the Mach stem. A numerical 
comparison of (2) and (3) is shown in figure 3. It will be seen that the new criterion 
is met at  somewhat smaller incidence angles oo than is the old 0ne.t Equation (3) 
becomes a Mach-line degeneracy, i.e. So = 0 and wo = ,uo (the Mach angle), at  
about No = 1.48, and it cannot be valid for Mo smaller than this. If we under- 
stand White correctly, he has also suggested the same criterion. 

Numerical data calculated from the RR, MR theory in a form suitable for 
comparison with experiment are presented in figures 4-9. The wave angles at 
the various types of confluence points were calculated by a method described 
by Henderson (1964), and the data include results for transition and on both 
sides of it. The gas was assumed to be perfect with y = f. The transition criteria 
worked out from (2) and (3) are also shown. 

3. Experimental work 
The experiments were planned to make a detailed comparison of (2) and (3) 

for steady and pseudo-steady flow. It was thought necessary to do this both in 
the presence of and in the absence of wall boundary-layer effects because these 
conceivably could modify the boundary condition (1) .  Experiments were also 
planned to obtain some data on unsteady transitions. It was considered that the 
latter tests would provide a crucial test of the conclusion that follows from (2) 
and figures 2 and 3 that there will be a discontinuity in the downstream 
pressure during transition when Mo > 2.23. An unsteady experiment has the 
property that the wave system passes through the transition RR -+ M R  during 
the course of the experiment and should therefore emit a band of expansion 

t Not0 that the two criteria coincide a t  Mo = 2.23. 
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waves into the downstream flow. This band should be of finite strength and 
should consist approximately of cylindrical waves that begin to grow out of 
the reflexion point at transition. They should be detectable by a schlieren 
system. 

The wind-tunnel models are shown in figures 1(a) and (b ) .  For the single 
wedge the reflexions occur in the presence of r all boundary layers. Numerous 
experiments on shock/boundary-layer interact)ion by Bardsley & Mair (1 951), 
Holder & Gadd (1955), Chapman et al. (1958) and others have shown this to be 
a complicated phenomenon with the reflected wave often substantially dispersed 
in the near field. When there is no separation, or when there is separation fol- 
lowed by reattachment, it seems that the wave angle o; of the reflected shock 
asymptotically approaches the angle predicted by inviscid perfect-gas theory. 
We tried to design our model (see figure l a )  so that the shock impinged on a 
thin boundary layer of high Reynolds number, so that the asymptotic value 
would be approached as closely as possible in the near field. We assumed that 
the symmetry of the other model (see figure I b )  would ensure that the wave 
system satisfied (l), and that the results would be nearly independent of boundary- 
layer effects.? 

The pseudo-steady flows were generated in a shock tube with the models 
shown in figures 1 ( c )  and (d ) .  A reflexion occurring on the single-corner model 
does so in the presence of a wall boundary layer which is itself produced by the 
wave system. A reflexion which occurs on the double-corner model should be 
nearly independent of wall boundary layers? and should also satisfy (1). The 
unsteady flows were generated in the same shock tube using the models shown 
in figures 1 ( e )  and (f). These are convex and concave corners formed from the 
surfaces of cylinders. All of the models were set up as accurately as possible, 
within 10' of arc, with the help of a cathetometer. 

Probably the most sensitive way of detecting the onset of Mach reflexion is 
by the appearance of the contact discontinuity which emerges from the wave 
confluence (Smith 1959); this is always visible before the Mach stem. Conversely 
the disappearance of this discontinuity is the most sensitive way of detecting 
the inverse transition. A schlieren system is therefore indicated and in fact the 
wave systems were photographed with a high-quality Zeiss instrument using 
an electric spark of duration about 1 ps. The model geometry and the wave 
angles were measured from the negatives with a Nikon V16 profile projector 
which enlarged them by a factor of about ten. This instrument is accurate to 
within 1' of arc, but we could not achieve this accuracy because the shock waves 
were not sufficiently smooth. 

Shock-tube experiments are conveniently done with fixed incident shock 
pressure ratios, that is with fixed shock Mach numbers Ms, but we wanted to 
m tke a direct comparison between the shock-tube and wind-tunnel results. 
NI IW the wind-tunnel work had to be done a t  a constant free-stream Mach num- 
ber M,, and this was initially about 2.8 but was subsequently raised to 3-0 tlo 
enhance the diff'erences between the RR and ICIR systems. Accordingly the shock- 

? Disturbances caused by changes in the boundary-layer displacement height can reach 
the wave confluence, but the effect should be small. 

1 0  F L M  68 
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FIGURE 4. Steady-state flow. Wind-tunnel results for transition to Mach reflexion. 
( a )  Single-wedge-model, M,, = 2.95 0-05. ( 6 )  Double-wedge model, Mo = 2.85 0.05. 
(2), transition point calculated from (2) ; (3), transition point calculated from (3) ; 0 ,  regular 
reflexion, experimental point ; 0, doubtful reflexion with unresolvable detail at the 
confluence; A ,  Mach reflexion; - , numerical data calculated from RR (al and az) 
and &lR (PI) theory; I, variation in numerical data due to variation in Mach number; 
+ , estimated experimental error. 

tube work was done so that the analogue M,/sinw, of M, in the pseudo-steady 
flows was equal to 3.0 as nearly as was practicable. The wind-tunnel data are 
presented in figure 4, the shock-tube data for M, = 3.0 are presented in figure 5, 
with some additional data for M, = 4 in figure 6, and the unsteady data are 
presented in figure 7. Data on pseudo-steady and unsteady flows obtained for 
Mo = 1.7 are presented in figures 8 and 9 respectively. We could not get any 
Mo = 1-7 data on steady flows because our wind tunnel is limited to the range 
2.4 < M, 6 3.0. In  all of this work the estimated experimental errors are shown 
in figures 4-9 by error bars. 

4. Discussion of the experimental results 
Inspection of the results for the steady flows (figure 4) shows that the inviscid 

perfect-gas theory predicts the wave confluence angles accurately for both 
regular and Mach reflexion, and also that (3) is the correct criterion for the 
transition while ( 2 )  is significantly in error. The same conclusions are valid for 
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FIGURE 5 .  Pseudo-steady flow. Shock-tube results for transition to Mach reflexion. 
(a )  Single-corner model, Mo = 3.0 f- 0.1. ( b )  Double-corner model, M6 = 3.0 f 0.1. (2), 
transition point calculated from (2) ;  (3), transition point calculated from (3 ) ;  0 ,  regular 
reflexion, experimental point ; 0, doubtful reflexion, with unresolved details a t  con- 
fluence, or Mach reflexion, with, in either case, W; = reflected wave angle after kink; 
A, doubtful reflexion, with unresolved details at confluence, w; = reflected wave angle 
before kink; A, Mach reflexion, slip line or Mach stem visible, 0:; p (u:), A, A (w;) ,  
values of wave angles for the same reflected shock wave; - , numerical data calcu- 
lated from RR (al and az) and MR (PI) theory; - - - , line developed in figure 10, P z ;  I, 
variation in numerical data due to variation in Mach number, AM = & 0.1 ; + , estimated 
experimental error. 

the pseudo-steady data shown in figure 5 (b ) ,  but there is a remarkable anomaly 
between the results shown in figure 5 (a )  and those shown in figures 4 (a) ,  4 ( b )  
and 5 (b ) ,  namely that, for the figure 5 (a )  data, the regular reflexion is apparently 
persisting beyond the limits predicted by both (2) and (3). It therefore continues 
to exist in a region where the perfect-gas theory has no RR solution. This per- 
sistence confirms similar results obtained by Bleakney & Taub, Griffith & 
Bleakney and Kawamura & Saito. Nevertheless apart from this anomoly the 
perfect-gas theory elsewhere accurately predicts the wave angles for both 
reguIar and Mach reflexion in figure 5 (a). 

In  an attempt to resolve the anomaly it was decided to make a detailed 
study of the polar diagram, figure 10. We began by assuming that the apparent 
regular reflesion that persisted beyond the limit determined by (3) was in 
reality a Mach reflexion, but that its Mach stem and contact discontinuity were 

10-2 
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FIGURE 6. Pseudo-steady flow. Shock-tube results for transition to Mach reflexion. 
Single-corner model, M,  = 4.0 f 0.2. For symbols see caption to figure 5 .  B, reflected 
wave angle for condition shown on figure lO(e); C ,  reflected wave angle for maximum 
deflexion described on figure l O ( f ) .  

too close to the wall to be observable. Now in figure 5 (a ) ,  M, > 2.40, so that the 
M R  system would have to be of the double-Mach-reflexion type. If this idea is 
correct then what we and others have been measuring is the reflected-wave 
angle wh at the secondary confluence and not the angle w; at the primary con- 
fluence. The confluences would have to be very close together ( < 0.1 mm apart) 
for them to be unobservable, which means that steady flow theory should be 
valid in a neighbourhood containing both points. The rather complicated 
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FIGURE 7. Unsteady flow. Shock-tube results for transition to Mach reflexion. (a )  Convex- 
corner model, No = 4.0 f 0.3. ( b )  Concave-corner model, M, = 4.0 & 0.3. For symbols see 
caption to figure 5. 



150 L. F.  Henderson and A .  Lozzi 

80" 

70" 

60' 

4 

50' 

40' 

3 0  

-+ t-t- 
I I I I 

35" 40" 45" 50" 55" 

"0 

FIGURE 8. Pseudo-steady flow. Shock-tube results for transition to Mach reflexion. Single- 
corner model, Mo = 1.7k0.1. a2 3 z B,  condition where (3) is met on hodograph 
diagram. For other symbols see caption to figure 5. 

sequence of events shown in figure 10 is described in the appendix, and from it 
we were able to calculate the wave angle u; of the reflected shock at  the secondary 
confluence point. This is plotted as a dashed line in figure 5 (a) ,  and it will be seen 
that for most of its length its agrees closely with the wave angle obtained from 
the RR theory, but significantly i t  also extends beyond the RR theory, which 
suggests that our hypothesis is correct, Further evidence is presented in figure 
6, where the larger Mach number Ho = 4 enhances the effects. The double Mach 
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FIGURE 9. Unsteady flow. Shock-tube results for transition to Mach reflexion. (a )  Convex- 
corner model, Mo = 1 . 7  * 0.2. ( b )  Concave-corner model, Mo = 1.7 & 0.2. For symbols seo 
caption to figure 5 .  
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1 1 2  I a, 
FIGURE 10. Transition to Mach reflexion with increasing incident shock 

wave angle, for M ,  > 2.40. 

reflexion becomes visible when wo is sufficiently large, and it is then possible to 
measure the wave angles w; and w; of the reflected shocks a t  both confluences. 
The results of doing this are shown in figure 6 .  It will be seen that for the primary 
confluence the measured values of w; are in agreement with the calculated ones 
PI, while for the secondary confluence pz the agreement is only qualitative and 
is quantitatively unsatisfactory. Better agreement is obtained by using a different 
method for calculating w; (see appendix); these curves are labelled C in figure 6. 
However, a still more refined theory of the p2 confluence is needed. Although it 
has been impossible to demonstrate it directly, there does seem to be substantial 
indirect evidence to support the hypothesis that, for the data in figure 5(a) ,  
equation (3) is again the criterion for transition and that the apparent persistence 
of the RR system beyond this point is  really due to a double-Mach-reJlexion system 
that has not developed suficiently to be observable as such. 

For the unsteady data shown in figure 7, the instantaneous RR flow appears 
to develop from a corner at  the intersection of the tangent a t  the point of reflexion 
and a normal to the flat plate at the initial corner formed by the plate and the 
cylinder. This normal is actually the locus of all the instantaneous corners. 
This property made it more difficult to control the experiments because the 
Mach number Mo = H,/sinw, depended on the instantaneous incidence angle 
wo, and so the value we got depended critically on the timing of our photograph 
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of the flow. Inevitably the data became somewhat scattered. Nonetheless the 
steady-state theory is surprisingly accurate and deviates beyond the limits of 
experimental error only occasionally. A remarkable feature of the data is that 
the convex-corner results have the same kind of behaviour as those shown in 
figures 4 (a ) ,  4 ( b )  and 5 (b ) ,  while the concave-corner results are similar to those 
shown in figure 5 (a,). Thus in the case of the concave corner we again have direct 
evidence that (3) is the criterion for transition, but our evidence is only indirect 
for the convex corner. We may also conclude that the anomalous behaviour of 
the data shown in figures 5 ( a )  and 7 ( a )  can be removed by replacing these 
boundaries with a sufficiently concave surface, but the minimum radius of 
curvature has not yet been determined. Significantly also, there was no sign 
of the emission of a band of expansion waves as the system passed through 
transition. For all the data presented in figures 4-7, boundary-layer and other 
viscous effects seem to be relatively unimportant. 

The pseudo-steady data presented in figure 8 for M,, = 1.7  are for the same 
type of transition as is illustrated in figure 2 (b).  The experimental data for the 
regular reflexion deviate increasingly from the theoretical curve as w,, increases, 
and once more they apparently extend to values of w0 for which the perfect-gas 
theory gives no solution. When the Mach reflexion becomes visible it is found 
that its wave angles do not agree with the three-shock theory. Similar results 
have been found by Bleakney & Taub, Griffith & Bleakney and Kawamura & 
Saito. Here also ( 2 )  fails to predict the transition, but on the other hand (3) 
appears to predict the onset of the deviation from the theoretical RR curve even 
though it apparently fails to predict the onset of Mach reflexion. We have had 
no success with our attempts to construct a quantitative theory that would 
predict the onset of Mach reflexion in the range 1-48 ,< M,, < 2-40, nor one that 
would predict the wave angles for our system that deviate from the RR theory. 
The reason may be due to the reflected shock’s becoming strongly curved a t  
the confluence point, which would make it impossible to verify a theory by 
measuring wave angles; but at  present we do not know whether this is so. 

Similar results were obtained for the unsteady data shown in figure 9. For 
the convex corner, (3) again predicts quite accurately the point where the experi- 
mental data begin to deviate from the RR theory, and the same is true for the 
concave corner. In  both cases, ( 2 )  again fails to predict any of the data. In  the 
Mach-number range 1.48 < Mo < 2.40, equation (2) is partly successful in that it 
seems to predict the onset of the deviation of the experimental data from the 
RR theory. More refined experiments will be needed to decide whether the de- 
viation is due to shock curvature, viscous effects, or something else. 

5. Conclusions 
The experimental results show quite clearly that the criterion quoted in a 

number of st.andard texts, equation ( 2 ) ,  for the transition between regular and 
Mach reflexion is wrong for every flow that has been investigated in detail, and 
these include flows which are steady, pseudo-steady and unsteady. The criterion 
that appears to be correct, at least for y = Q and M, 2 2.40, is (3), and is charac- 
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terized by the condition that at transition the Mach reflexion has a Mach stem 
that is normal to the flow. This means also that transition takes place in such a 
way that mechanical equilibrium of the system is preserved throughout the 
process. The inviscid perfect-gas theory is accurate for both regular and Mach 
reflexions for M, 3 2-40 in air at  least up to M, = 4. This last conclusion is valid 
for steady and pseudo-steady flows, and is sufficiently valid to be useful even 
for unsteady flows. In all of these cases viscous effects seem to be of comparatively 
minor importance. For the range 1-48 < M, < 2-40, the inviscid perfect-gas 
theory is accurate for regular reflexions up to the value of the angle of shock 
incidence w, determined by equation (3), but beyond this limit the effects of 
shock-wave curvature possibly prevent an accurate comparison between theory 
and experiment. At M, = 1.48, equation (3) becomes a Mach-line degeneracy, 
and for M, < 1.48, it  does not exist. We do not yet know what is the correct 
criterion for this range but on the basis of the data we have so far we would 
expect it would be such that the mechanical equilibrium of the system is pre- 
served during the transition process. 

This work was supported by the Australian Research Grants Committee. 

Appendix 
Only a brief description of the polar diagrams is given here; further details 

of the technique have been given elsewhere (Guderley 1947; Henderson 1966). 
For M, > 2.40 and y = f, the sequence of events describing the transition process 
is illustrated in figure 10. The regular-reflexion solution is defined by the weaker 
(al) of the two points a1,2 a t  which the reflected shock polar I1 intersects the 
ordinate; see figure 10 (a). The M R  solution is defined by one of the intersection 
points PI of polars I and 11. The transition condition defined by (3) is shown in 
figure i O ( b ) ,  where a1 coincides with the normal shock point B of the primary 
polar I (al = PI = B). For larger values of w,, (or do), the a1 solution continues to 
exist for a while, until in fact polar I1 becomes tangential to the ordinate (al = a2), 
and it is this condition which corresponds to ( 2 ) .  However for those values of wo 
greater than those defined by (3) we propose that the a1 solution should be 
replaced by the solution points labelled Pl,z in figure lO(c), which corresponds 
to it double Mach reflexion. The point Pl is the solution for the primary confluence 
and the point p2 that for the secondary confluence. The P2 solution is constructed 
by plotting a characteristic curve c from p1 until it  intersects the ordinate at 
A. Physically the characteristic represents the band of compression waves 
which turn the flow back parallel to the walI after it has been deflected towards 
the wall by the primary Mach reflexion. Next a second characteristic d is con- 
structed from point A ,  and its intersection with 11 defines the ,LIZ solution. The 
characteristic d represents a weak band of expansion waves which are the re- 
flexions of the compression waves off the shock r .  With further development 
(increasing w,), the PZ solution undergoes continuous changes until the position 
shown in figure 10(d)  is reached. In  the process the compression fan gradually 
concentrates itself into a shock r2,  and the ,LIZ solution is now defined by the 
intersection of polars I1 and IV, where IV is constructed for a Mach number M2 
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downstream of r2.  The wave angles for p2 are shown in figures 5 and 7. The sub- 
sequent events involve some discont'inuities although these appear to be of 
minor character. The /I2 results do not agree with sufficient accuracy for develop- 
ment beyond figure l O ( e ) ,  but the wave angle calculated a t  the point C of 
maximum deflexion on I1 is better, and this is also shown in figure 6, but clearly 
the Pa solution will need even more refined study. The theory of the /& confluence 
however now seems to be satisfactory. Photographs of the type of wave system 
shown in figure i O ( e )  have been obtained by Weynantes, Law & Glass, Gvoz- 
deava et al. and others. 
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